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ABSTRACT 

 
Scientists often use organoids to research diseases. Organoids are three-
dimensional, organ-like cell assemblies in which different cell types have 
organized themselves in a way that is approximately typical for the corresponding 
organ in the body. They show three characteristics: self-organization, 
multicellularity and functionality. This study concentrates on liver organoid 
research and its future role in different pediatric diseases. The range of organs 
that can be studied with organoids is growing rapidly and includes the brain, 
intestine, kidney, stomach, pancreas, lung, liver, prostate, esophagus, 
gallbladder, and the female reproductive tract, among others, and also the 
embryo. Organoids enable the scientific study of human development, physiology 
and pathology on a scale. Organoids are grown either from pluripotent stem cells 
or from tissue-specific adult stem cells. Adult stem cells are present in a large 
number of tissues and are responsible for renewing the cells in these tissues. 
They can only give rise to the cell types that are present in the particular tissue, 
the stem cell of the intestinal epithelium only produces cells of the intestinal 
epithelium, but not muscle cells or nerve cells. They are thus multipotent. Today, 
it is possible to reconstruct organ-like tissue organoids in the laboratory. Stem 
cells are thereby induced to differentiate by molecular signals and grown in 
culture systems that promote their three-dimensional self-organization. Rapidly 
developing organoid technology makes it possible to phenotypically copy cell 
structure. To some extent, this is also true for the functions of various human 
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organs (for example, brain, thyroid, thymus, intestine, liver, pancreas, stomach, 
lung, kidney) and even early-stage embryos. As near-physiological 3D culture 
systems, organoids open up new possibilities to study the development of 
healthy and diseased organs and offer great potential for translational research. 
Further research in the field of paediatrics will show further development of in 
vivo use of organoids in the future, especially in liver diseases in childhood.  
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1. INTRODUCTION 
 
Organoids are simple tissue-engineered cell-based in vitro models that 
recapitulate many aspects of the complex structure and function of the 
corresponding in vivo tissue [1,2]. Scientists often use organoids to research 
diseases [3-58]. The modern term organoid refers to cells growing in a defined 
three-dimensional (3D) environment in vitro to form mini-clusters of cells that 
self-organize and differentiate into functional cell types, recapitulating the 
structure and function of an organ in vivo (hence, also called “mini-organs”) [59]. 
These clusters of specific cell types are created in the laboratory from human 
stem cells. Depending on the nutrient solution and treatment, they form three-
dimensional organ-like structures from several cell types [1-56]. They can be 
used to more realistically reproduce malfunctions or developmental steps 
because they are more similar to the human body than one-dimensional cell 
cultures of individual cell types [2,4,23,34,56]. In particular, cells in brain 
organoids can even mature to the point where they resemble those of a 
postnatal brain [60]. The brain cell clusters mirror the genetic and structural 
changes in the brain of a newborn. Previously, researchers had assumed that 
the organoids were only suitable for studying prenatal brain development. 
Organoids could also be suitable at the advanced stage to study neurological 
diseases that develop only with the more complex development of the brain. 
Concerning the liver organ, it has been known since Aristotle that the human 
liver has the greatest regenerative capacity of all organs in the body and can 
regrow even after an amputation of 70%. This makes transplantation by liver 
donors possible. The molecular mechanisms by which adult liver cells trigger 
regeneration are still largely unknown. About 29 million people in Europe suffer 
from chronic liver diseases such as cirrhosis or liver cancer [60]. They are a 
major cause of disease and mortality, with liver disease contributing to about two 
million deaths worldwide each year. Currently, there is no cure and liver 
transplants are the only treatment for liver failure. Scientists in the field of 
molecular cell biology and genetics are investigating the biological basis of liver 
regeneration in humans. In 2013, Huch and Clevers developed the first liver 
organoids-miniature liver tissues that were created from mouse liver cells in a 
Petri dish in the laboratory. The researchers even succeeded in transplanting the 
organoid into a mouse, where it could take over liver functions. In 2015, they 
successfully transferred this liver organoid technology to culturing a human liver 
in a Petri dish based on human liver samples. The two most important functional 
cells in the adult liver are the hepatocytes, which perform many functions in the 
liver, and the ductal cells, which form the network of tiny ducts through which bile 
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is directed to the intestine [60]. These work together with other supporting cells, 
such as the blood vessels or the mesenchymal cells. To build liver organoids, 
researchers initially used only ductal cells of the bile duct. In a healthy liver, 
there are a certain number of contacts between the ductal cells and the 
mesenchymal cells that signal the ductal cells not to proliferate and just stay as 
they are. Once the tissue is damaged, the mesenchymal cells reduce the 
number of contacts they have with the ductal cells so that the ductal cells can 
proliferate to repair the damage. From their observations, the researchers 
concluded that it is the number of cell contacts, rather than the number of both 
cell types, that determines how many cells are produced to repair the damaged 
tissue. Too many touches by mesenchymal cells mean that fewer or no new 
ductal cells are produced, while fewer touches mean that more cells are 
produced [60]. Organoids are three-dimensional structures of cells generated 
from stem or progenitor cells in vitro. They resemble organs in vivo in terms of 
the cell types they contain, their spatial arrangement and specific functionality 
[4,7,12,26,52]. Their development is often characterized by the term "self-
organization". This is understood as a process of formation of complex 
structures from initial cells by interactions of the cells with each other and 
between the cells and their environment. Stem cells are cells that can give rise 
to further stem cells as well as specialized cells (ability to differentiate) by 
division. Progenitor cells, on the other hand, are descendants of stem cells 
already committed to the formation of specific cell types. The range of organs 
that can be replicated in this way in different species is now very wide and 
includes organs and cell types that have arisen from the cells of all three 
cotyledons. Cotyledons are the three cell layers hat form during embryonic 
development and that can give rise to different tissues in the course of further 
development [60]. The three cotyledons contain, so to speak, the 
developmentally most distant groups of cells. Since organoid technology can 
already reproduce these greatest possible cellular differences, it is assumed that 
in principle organoids of all organs can be produced. However, one organoid 
does not always represent the entire organ: frequently, several organoids 
reproduce different aspects of individual organs, thus making them accessible to 
experimental scientific research. Their potential for application in various fields, 
especially biomedical research and therapy, is promising his ranging from basic 
research, in vitro investigation of organ development and disease research, to 
use as test systems for drug development and toxicity testing, to cell, tissue and 
organ replacement within regenerative medicine [60]. Research on organoids 
raises great hopes and opens up new perspectives, especially for the endeavour 
of increasingly personalized medicine and in the field of paediatrics [1-56]. 
 

2. PRESENT SITUATION OF ORGANOID RESEARCH 
 
The range of available organoids is growing rapidly and includes replicas of the 
brain, intestine, kidney, stomach, pancreas, lung, liver, prostate, esophagus, 
gallbladder and the female reproductive tract as well as the embryo (so-called 
embryoids) currently, organoids are primarily used by researchers as model 
systems for different organs to better study their development, functioning and 
diseases [1-56]. In addition to their utility in basic research, they are used for 
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drug development and toxicity testing [60]. In the Netherlands, organoids are 
also already part of the healthcare system as patient-derived organoids from 
cystic fibrosis patients for pre-testing of drugs. However, they also raise 
questions that have so far been little discussed in Germany. These include, for 
example, questions about the transferability of research results on organoids to 
corresponding organs in vivo or whether it might be possible in the future to 
counter the shortage of donor organs by replacing organs in the form of 
organoids. However, major technical hurdles and unresolved scientific questions 
still stand in the way of this vision. Another ethically controversial issue, for 
example, is how the possible development of consciousness in the increasingly 
complex brain organoids should be judged, involving questions about the 
measurability of mental and cognitive processes on the one hand and possible 
claims for protection on the other [60]. 
 

3. FUTURE THERAPEUTICAL POTENTIAL IN PEDIATRIC 
DISEASES 

 
Organoids enable the scientific study of human development, physiology and 
pathology on a scale and with a level of precision previously unheard of. To 
date, scientists have explored this using animal models and two-dimensional 
human cell culture models. Appropriate approaches have led to countless 
important discoveries, but have specific limitations: In vivo animal models are 
not ethically sound, are costly and time-consuming; moreover, they only 
imperfectly replicate human physiology, and their complexity can make it 
difficult to determine cause and effect in experiments. Conventional human 2-D 
cell culture models, on the other hand, are often too simple because they often 
contain cells of only one cell type [60]. Moreover, 2-D cell culture models are 
typically derived from patient cancer tissues or induced into a cancer-like state 
by viral oncogenes, which allows for unlimited propagation of these models in 
vitro, but can also lead to genomic instability and differences in these models 
compared to their in vivo counterparts. 
 
Organoids, on the other hand, can also be generated from healthy human cells, 
contain many of the cell types found in an organ, and exhibit a stable genotype-
phenotype relationship as well as aspects of human organ architecture, 
physiology, and function. 
 

4. DISCUSSION 
 
Organoids enable the scientific study of human development, physiology, and 
pathology at a scale and level of precision not seen before. To date, scientists 
have explored this using animal models and two-dimensional human cell 
culture models [1-56]. Appropriate approaches have led to countless important 
discoveries, but have specific limitations: In vivo animal models are not ethically 
sound, are costly and time-consuming; moreover, they only imperfectly 
replicate human physiology, and their complexity can make it difficult to 
determine cause and effect in experiments [60]. Conventional human 2-D cell 
culture models, on the other hand, are often too simple because they often 
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contain cells of only one cell type. Moreover, 2-D cell culture models are 
typically derived from patient cancer tissues or induced into a cancer-like state 
by viral oncogenes, which allows for unlimited propagation of these models in 
vitro but can also lead to genomic instability and differences in these models 
compared to their in vivo counterparts. Organoids, on the other hand, can also 
be generated from healthy human cells, contain many of the cell types found in 
an organ, and exhibit a stable genotype-phenotype relationship as well as 
aspects of human organ architecture, physiology, and function. For these 
reasons, many complex processes can be well studied using organoids. Basic 
research enabled by organoids includes the study of embryonic development, 
organ development (organogenesis), and maintenance of organ function. In 
addition, organoids can be used as disease models for research into both 
genetic diseases and infectious diseases. Several clinical trials using organoids 
are already underway [60]. Since organoids can be produced from both healthy 
and diseased tissues, they offer a wide range of applications in basic and 
translational research. However, due to the lack of access to healthy and 
diseased tissues from patients, there remains interest in organoids derived 
from human pluripotent stem cells, which are renewable and widely available. 
 

5. CONCLUSION 
 

Currently, organoids, particularly lung, kidney, liver, pancreas, and intestinal 
organoids, are being used for COVID-19 research, especially for modelling 
certain disease processes and for screening existing drugs for other diseases for 
efficacy against Sars-Cov-2 [60]. They are also important for cancer research  
[1-56]. Further research in the field of paediatrics will show further development 
of in vivo use of organoids in the future, especially in liver diseases in childhood 
[1-56]. 
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