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ABSTRACT 
 

Autism is associated with synaptic dysfunctions, leading to disturbances in neural circuit 
connectivity. The result is an impaired synaptic pruning process, which removes extra connections, 
causing an overabundance of the synaptic system in autistic brains. Mutations in genes associated 
with synapse formation, elimination, transmission, and plasticity also contribute to this dysfunction, 
potentially changing social communication and behavior. During brain development, healthy brains 
undergo synaptic pruning, where unnecessary connections are eliminated. Especially in autism 
spectrum disorders, this process is often less effective, leading to a change of number of synapses. 
This higher number of synapses can disrupt normal communication pathways, contributing to 
autistic symptoms. Different genes associated with an increased risk for autism also play important 
roles in synaptic maturation and function. Mutations in these genes can lead to defects in synapse 
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formation, maintenance, and communication. Many different proteins are essential for synapse 
function, such as those encoded by genes like SHANK3, are often affected in autism spectrum 
disorders. Defects in these proteins can alter synaptic structure and signaling, impacting synaptic 
plasticity. The combination of increased synapse numbers and impaired synaptic function can result 
in disturbed neural circuit connectivity. This disrupted connectivity affects how the brain processes 
information and relates to the core symptoms of autism, including difficulties with social 
communication and repetitive behavioral symptoms. Synaptic dysfunction plays an important role in 
the co-occurrence of autism spectrum disorders and epilepsy forms, as it underlies the common 
neurobiological features shared by both conditions. Disrupted synaptic function, which involves the 
communication between neurons, leads to an imbalance between excitatory and inhibitory signals 
in the brain, increasing the risk for both ASD-related challenges and epileptic seizures. This 
dysfunction can stem from genetic mutations affecting synaptic proteins or other cellular processes, 
leading to both developmental delays, autism-like behaviors, and increased susceptibility to 
seizures. Further research has to focus on the biochemical mechanism of synaptic function and 
dysfunction in both entities in childhood.  
 

 
Keywords: Autism-child; synapse; dysfunction; epilepsy; mutation. 
 

1. INTRODUCTION 
 
Understanding synaptic dysfunction as a key 
mechanism in autism suggests that interventions 
targeting synaptic processes could be a 
promising therapeutic strategy. Studies in animal 
models with autism-related genetic mutations 
have shown that correcting abnormal synaptic 
pruning or function can improve autistic-like 
behaviors, indicating that these phenotypes 
might not be entirely irreversible. Shared 
pathophysiology and a core mechanism in both 
ASD and epilepsy is the abnormality in how 
neurons communicate through synapses, the 
junctions where signals are transmitted. Synaptic 
dysfunction can disrupt the balance between 
excitatory (activating) and inhibitory (calming) 
neurons, a fundamental aspect of brain function 
that is often disturbed in both ASD and epilepsy. 
Other shared pathways include abnormalities in 
cell signaling and cell proliferation, which are 
crucial for brain development and can be 
affected by genetic factors. Many genetic 
mutations and syndromes that cause ASD also 
increase the risk of epilepsy, leading to the term 
"syndromic autism". These genetic variants can 
directly impact synaptic proteins and neuronal 
circuits, causing both conditions. The brain's 
ability to adapt and change its synaptic 
connections (synaptic plasticity) is particularly 
active during early development. Disruptions 
during this vulnerable period can lead to long-
lasting effects, contributing to both autistic traits 
and epilepsy. Abnormalities in processes like 
synaptic pruning—the elimination of faulty 
neuronal connections—can result in "over-
connectivity" or altered communication between 
brain regions, a feature seen in both autism and 

epilepsy.  Well-known genetic conditions like 
Fragile X syndrome and Tuberous Sclerosis 
Complex are examples where single gene 
disorders can cause both autistic phenotypes 
and epilepsy. Pathogenic variants in the DNM1 
gene can lead to severe neurodevelopmental 
issues, including epilepsy and autistic traits. 
Research using human cerebral organoids 
shows that microglial cells, when exposed to 
SCN2A mutations associated with ASD, can 
increase the elimination of postsynaptic 
components, affecting synaptic function. 
 

1.1 Synaptic Adhesion Molecules (SAM) 
and their Impact on Synapse 
Formation 

 

Neurexin and Neuroligin are the SAMs with the 
greatest influence on synaptic formation, with 
other important molecules being EphB/Ephrin-B, 
immunoglobulin (Ig)-containing SAMs, 
Cadherins, and SynCAMs. These molecules 
facilitate synaptogenesis by connecting pre- and 
postsynaptic terminals and organizing the 
components within them, with specific subtypes 
determining whether they are involved in 
excitatory or inhibitory synapses. Restoring 
Munc-13-1 mitigates presynaptic pathology. 
Neurexin and Neuroligin are a central pair of 
SAMs, with Neurexin being presynaptic and 
Neuroligin postsynaptic, forming a transsynaptic 
complex crucial for the formation of both 
excitatory and inhibitory synapses. EphB and 
Ephrin-B are a pair of SAMs that control synaptic 
development by regulating the localization and 
function of glutamate receptors. Immunoglobulin 
(Ig)-containing SAMs are a family of molecules, 
including SynCAMs, that play a role in synapse 
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formation and modulation of synaptic plasticity, 
influencing activity-dependent remodeling of 
synapses. Like Neurexin and Neuroligin, 
Cadherins contribute to both the general 
formation of synaptic contacts and the 
determination of specific synaptic partners. As 
members of the Ig domain SAM family, 
SynCAMs contribute to synaptic plasticity by 
shaping synapses and promoting activity-
dependent remodeling. SAMs act as "bridges" 
connecting pre- and postsynaptic neurons and 
providing the basis for stable synaptic 
connections. 
 

1.2 Synaptic Dysfunction as a Key 
Feature of Autism 

 
Synaptic dysfunction is a key feature of Autism 
spectrum diseases, most often from genetic 
mutations affecting synaptic proteins or 
environmental factors that disrupt correct brain 
development (Xian et al., 2025). Research 
reflects disturbances in synaptic pruning, 
synapse numbers, and function in individuals 
with autism disorders, possibly contributing to the 
condition's characteristic social and behavioral 
challenges. Targeting synaptic pathways, 
neuroinflammation, and synaptic excitability may 
offer therapeutic strategies for ASD. Abnormal 
synaptic pruning is one key element during 
development, the brain refines its neural 
connections through a process called synaptic 
pruning. Dysregulation of this process, 
particularly involving the brain's microglia, has 
been linked to ASD. Many genes associated with 
ASD are involved in the structure and function of 
synapses. These include genes that encode 
scaffolding proteins and molecules crucial for 
synapse formation, elimination, and plasticity. 
Studies using PET scans have shown that 
autistic adults have fewer synapses than 
neurotypical individuals. Disrupted synaptic 
function can lead to altered neuronal signaling, 
potentially affecting brain network connectivity 
and contributing to functional under- and 
overconnectivity observed in the autistic brain 
(Libera et al., 2025). Mutations in genes like 
SHANK3 are associated with synaptic 
dysfunction and are implicated in ASD. Variants 
in these genes, which encode cell adhesion 
molecules essential for synapse formation, are 
also linked to ASD pathogenesis. Microglia brain 
cells play a role in synaptic pruning. Impaired 
microglial function, as seen with TMEM59 
deficiency, can lead to excessive accumulation of 
synapses and contribute to ASD-like behaviors. 
Targeting the inflammatory response in microglia 

could help improve synaptic pruning and alleviate 
symptoms. Modulating synaptic excitability and 
pruning-related molecular pathways offers 
potential strategies for treating ASD. Further 
research into the genetic factors that cause 
synaptic pathology may lead to more targeted 
interventions (Carter, 2019). 
 

1.3 Specific Genes Associated with 
Autism (ASD) 

 
Autism Spectrum Disorder (ASD) is associated 
with rare mutations in over 100 genes, with 
SHANK3 (Shi et al., 2025, Francavilla et al., 
2025, Bae et al., 2025), ADNP (Gualtieri et al., 
2025, Kang et al., 2025, Trudler et al., 2025), 
CHD8, and DYRK1A being frequently identified, 
often impacting brain development by affecting 
processes like synaptogenesis (Elkhateeb et al., 
2023). These mutations can be inherited or occur 
de novo, spontaneously in the embryo, and can 
be found in specific networks of genes that 
control neuronal development, contributing to a 
higher likelihood of developing ASD. 
Researchers have identified numerous genes, 
including: SHANK3 (Shi et al., 2025, Francavilla 
et al., 2025, Bae et al., 2025), plays a role in 
forming neuronal connections; ADNP, involved in 
brain development; CHD8, a gene where 
mutations are linked to autism and sometimes 
other developmental issues; DYRK1A, 
associated with autism and affects brain 
development; ARID1B, ASH1L, CHD2, other 
genes where rare mutations are linked to ASD. 
CNTNAP2, NRXN1, NLGN4X, MDGA1, DSCAM 
and Scn2a are genes within the synaptic network 
that are commonly involved in ASD (Gao et al., 
2025, Shih et al., 2025, Karmon et al., 2022). 
Moreover, mi RNA`s and dysregulation of 
neuropilin-2-expression seem to play an 
important role in autism pathogenesis (Kim et al., 
2025, Liu et al., 2025, Dhaliwal et al., 2024, Shiu 
et al., 2025, Ogwo et al., 2025, Altaf et al., 2025, 
Vidyadhara et al., 2024, Lim et al., 2021, Cheng 
et al., 2018, Graber et al., 2017). mTORC 1 and 
2 seem to play a key role in neural abnormalities 
of PTEN-deficient human neurons and cortical 
organoids (Subramanian et al., 2025). 
Intraneuronal accumulation of amyloid-beta-
peptides seems to link to co-morbities of autism 
(Santhakumar et al., 2024, Sibih et al., 2025). 
 

1.4 Synaptic Dysfunction as a Key 
Feature of Epilepsy 

 

Synaptic dysfunction is a key feature of epilepsy, 
involving disruptions in neurotransmitter release, 
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reception, and synaptic strength, often stemming 
from genetic mutations affecting proteins in the 
synaptic vesicle cycle or ion channels. These 
synaptic abnormalities lead to neuronal 
hyperexcitability, causing synchronized electrical 
activity and seizures. Specific molecular 
dysfunctions, like impairments in vesicle 
recycling or faulty ion channels, can result in 
diverse forms of epilepsy, including severe 
neurodevelopmental disorders. Genetic defects 
in proteins involved in the synaptic vesicle cycle 
(e.g., SYN1, STXBP1, DNM1) can hinder the 
proper release of neurotransmitters, which are 
essential chemical messengers for neuronal 
communication. Dysfunctions in long-term 
potentiation (LTP) and other forms of synaptic 
plasticity can disrupt the fine-tuning of synaptic 
connections, contributing to hyperexcitable 
circuits. Mutations in ion channels (e.g., SCN1A, 
KCNQ2), which control neuronal excitability and 
firing patterns, can lead to excessive neuronal 
activity and trigger seizures. Genes like SYN1 
(vesicle pool regulation), STXBP1 (vesicle 
docking and priming), and DNM1 (vesicle 
recycling) are involved in the multi-step process 
of synaptic vesicle release. Changes in 
postsynaptic receptors, which receive 
neurotransmitters from presynaptic neurons, can 
disrupt normal signaling. Mutations in genes for 
sodium (e.g., SCN1A), potassium (e.g., KCNQ2), 
and calcium channels have been linked to 
epilepsy. The core mechanism of epilepsy is 
characterized by uncontrolled electrical activity in 
the brain. The disruption of proper neuronal 
communication and circuit function increases the 
likelihood of synchronized neuronal discharges, 
characteristic of epileptic events. The role of 
synaptic plasticity in the development and 
progression of epilepsy is a major area of study, 
with a focus on identifying potential therapeutic 
targets. Understanding the specific presynaptic 
and postsynaptic alterations offers potential 
avenues for developing novel treatments for 
epilepsy. Argininosuccinic aciduria could play an 
important role in epilepsia (Frackowiak and 
Mazur-Kolecka, 2023).  
 

1.5 Specific Genes associated with 
Epilepsy 

 

Specific genes associated with epilepsy include 
SCN1A, KCNQ2, and KCNQ3, which code for 
ion channels critical for neuronal excitability. 
Other examples are CDKL5 (infantile spasms), 
ARX and LGI1 (focal epilepsies), and STXBP1 
(epileptic encephalopathy). Many identified 
genes are involved in neuronal function and 

development, and a wide range of genes, such 
as ALDH7A1 and PNPO, have been linked to 
epilepsy and may be targets for gene-directed 
therapies. SCN1A, SCN2A are genes that code 
for sodium channels, which are essential for 
nerve impulse transmission. Mutations are 
associated with various forms of epilepsy. 
KCNQ2 and KCNQ3 are involved in potassium 
channels, and their mutations are linked to 
epilepsy. GABRA1 and GABRG2 gene 
mutations, which code for GABA receptors, can 
lead to epilepsy. Mutations in genes CHRNA4, 
CHRNB2 coding for nicotinic acetylcholine 
receptors, are associated with autosomal 
dominant nocturnal frontal lobe epilepsy (Cortès-
Saladelafont et al., 2018, Asch et al., 2025). 
 

2. DICUSSIONS 
 
Shared synaptic patterns in autism and epilepsy 
include an imbalance between excitatory and 
inhibitory (E/I) neural activity, synaptic 
dysfunction involving impaired receptor function 
and signaling molecules, and abnormalities in 
synaptic plasticity and synaptogenesis, with a 
common genetic basis for many individuals with 
both conditions (Shi et al., 2025, Francavilla et 
al., 2025) These synaptic disruptions can lead to 
hyperexcitability and synchronized neuronal 
discharges, characteristic of epileptic events, and 
contribute to the atypical connectivity and 
communication observed in autism spectrum 
disorder (ASD)(Shi et al., 2025, Xian et al., 2025, 
Bae et al., 2025, Kim et al., 2025, Subramanian 
et al., 2025, Elkhateeb et al., 2023). A key 
commonality is an imbalance in E/I 
neurotransmission, where there is an overactivity 
of excitatory signals and/or reduced inhibitory 
signals, leading to increased overall neuronal 
excitability. This imbalance contributes to 
increased short-term plasticity, enhanced 
synchrony of neural activity, and potentially over-
connectivity, which is seen in both epilepsy and 
autism (Gualtieri et al., 2025, Bae et al., 2025, 
Liu et al., 2025). Both autism and epilepsy can 
involve alterations in synaptic plasticity, the 
brain's ability to change connections. Dysfunction 
in molecules that regulate synaptic function, 
including neurotrophins, signaling pathways, and 
receptors, contributes to these synaptic 
alterations. Some genetic conditions linked to 
both disorders result in impaired synaptic 
function, such as reduced synaptic vesicle 
fusion, which dysregulates neuronal circuits (Shi 
et al., 2025, Kang et al., 2025, Francavilla et al., 
2025). Disruptions during neurodevelopment can 
affect normal synaptic development, leading to 
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atypical patterns of over-connectivity in certain 
brain regions in individuals with autism, while 
also predisposing them to epilepsy. In some 
cases, there is evidence of altered dendritic 
spine density and cortical over-connectivity that 
disrupts efficient communication between brain 
regions (Chen et al., 2025, Moradi et al., 2025, 
Dimitrov et al., 2025). Many genes implicated in 
autism and epilepsy affect common biological 
pathways critical for brain development and 
function, including gene transcription, cell 
proliferation, and synaptic growth. A significant 
overlap exists in the genetic basis of both 
disorders, with some individuals having genetic 
developmental and epileptic encephalopathies 
that manifest with both ASD and epilepsy 
(Klaustermeier et al., 2025, Chen et al., 2025). 
Further research should further evaluate the 
synaptic processes in both entities to rule          
out, if autism and epilepsy have a significant 
correlation on synapse function and synapse 
molecular pathologies (Lee et al., 2016, Witt et 
al., 2025). 
 

3. CONCLUSION 
 
Further extensive biochemical research must 
focus on the role of synaptic dysfunctions in 
autism spectrum disorder and epilepsy in 
childhood. There is a lack of information 
concerning the role of different proteins of the 
SNARE-complex and also the group of synaptic 
adhesion molecules (SAM) and their impact on 
synapse formation and synapse function. 
Recently, new proteiens playing a role in this 
synaptic system were found and to date, not 
closer analysed. Research must focus on this 
topic to understand the relation of autism and 
epilepsy, possibly to realize autism as a “mild 
form” of epilepsy.  
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